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Aspect-ratio dependence of percolation probability in a rectangular system
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~Received 2 June 1999; revised manuscript received 11 September 2000!

I investigate site percolation on a rectangular system~aspect ratioa! of a square lattice for a given occupa-
tion probabilityp ~not restricted topc! using computer simulations. The dependence of the percolation prob-
ability R on a is shown and analyzed on the basis of a modified finite-size scaling function. A method for
evaluatingR without statistical simulations is proposed for given conditions~longitudinal dimensionL, a, and
p! of the system.

PACS number~s!: 05.90.1m, 02.90.1p, 02.60.Cb, 72.80.Tm
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The research on percolation in a rectangular system
initiated by Monetti and Albano@1–3#. Their work was fur-
ther advanced by Cardy@4#, Langlands and co-workers@5,6#,
Ziff @7–10#, and Hovi and Aharony@11#. These researcher
carried out computer simulations on two-dimensional~2D!
lattices, and succeeded in deducing a function for evalua
the percolation probabilityR in a given aspect ratio and i

FIG. 1. ~a! Variation of percolation probabilityR with aspect
ratio a:(d)L520 and p50.70; (m)L5100 and p50.58; and
(j)L51000 andp50.45. The number of trials for each value ofa
is 1000.~b! Variation of R with the transformed aspect ratioan .
The symbols correspond to those in~a!. Except for the portion
where R begins to decrease from 1, the three curves are alm
superimposable on top of one another.an50 agrees with the aver
age point of the transition region.
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the vicinity of the percolation thresholdpc . Since then, re-
search on percolation in a three-dimensional rectangular
tem was performed recently@12–15#. In contrast, percolation
on a rectangular system with a given occupation probab
p ~not restricted topc! has not yet been studied. Hence the
is no method for evaluatingR in such a system, though it i
applicable to a wide range of actual percolation systems
this report, I show the results of computer simulations p
formed on a 2D rectangular system with a givenp, and ana-
lyze them based on a modified finite-size scaling functi
Furthermore, I propose a method for evaluatingR under
given conditions~size, aspect ratio, and occupation probab
ity! without carrying out statistical simulations.

Computer simulations were carried out on square latti
~the site percolation model!. The longitudinal and transvers
dimensions of the rectangular system are denoted byL and
M, respectively. The aspect ratioa is defined as

a5M /L. ~1!

Recently Acharyya and Stauffer reported that the value oR
is different according to boundary conditions@16#. In this

st

FIG. 2. Plot of Da /aav vs aav:(d)L520 and p
50.60– 0.70;(m)L550 and p50.56– 0.64;(j)L5100 and p
50.53– 0.61;(s)L5200 and p50.45– 0.55;(n)L5500 and p
50.42– 0.55;(h) andL51000 andp50.30– 0.50. These are base
on R-a curves which become superimposable on theR-an curves
of Fig. 1~b! through coordinate transformation.
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work, simulations were carried out under the free bound
condition, because it applies to many actual percolation s
tems. Each site of the square lattice was occupied rando
with a probabilityp. Percolation was defined when one
more clusters of occupied sites connected from the left s
to the right side of the system. For a set ofL, M, andp, 1000
different configurations were tried.R was calculated as th
proportion of percolation frequency in the trials. The depe
dence ofR on a was examined by changingM for a set ofL
andp.

The dependence ofR on a is shown for three sets ofL and
p in Fig. 1~a!. R decreases from 1 to 0 witha. For theR-a
curve, I define the average pointaav and width Da of the
transition region as

aav52E
0

`

a~dR/da!da, ~2!

Da
252E

0

`

~a2aav!
2~dR/da!da. ~3!

Then I calculate a transformed aspect ratioan according to

an5~a/aav21!/~Da /aav!. ~4!

The coordinate transformation ofa into an changesaav and
Da of the R-a curve to 0 and 1, respectively. By the tran
formation, theR-a curves shown in Fig. 1~a! result in the
curves shown in Fig. 1~b!. The curves are superimposable
one another in spite of the great differences inL and p. I
confirmed that all simulation curves transformed by Eq.~4!
were superimposable on one another. Figure 2 illustrate
sigmoid curve representing the relationship betweenDa /aav
andaav, which are obtained from the simulation curves. T
value ofDa /aav increases withaav. It must be noted thatR
decreases sharply witha in the transition region if the value
is small. For example, an increase ofa by about three times
causesR to decrease from 1 to 0 ifR is equal to 0.2.

The finite-size scaling theory is applied for the finite-si
square system@17#. I modify the scaling function to the rect
angular system as

FIG. 3. R-a curves drawn for two values of (p-pc)L
1/n. Two

sets of L and p were chosen for each value.~a! (p-pc)L
1/n;

216.3:(d)L5500 andp50.44; (s)L51000 andp50.50. ~b!
(p-pc)L

1/n;0.54: (m)L520 and p50.65; and (n)L5100 and
p50.61.
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R5F@a,~p2pc!L
1/n#, ~5!

where F is the generalized scaling function, andn is the
correlation length exponent. The values ofpc and n are
0.592746 and4

3, respectively, in the case of site percolatio
on a square lattice@17#. According to Eq.~5!, an identical
R-acurve should be drawn for different sets ofL andp if the
(p2pc)L

1/n values of the sets are identical.R-a curves
drawn for two values of (p2pc)L

1/n are shown in Fig. 3.
The two curves in the case of~a! (p2pc)L

1/n;216.3 are
superimposable on top of each other even though they
drawn for different sets ofL andp. Similarly, the two curves
in the case of~b! (p2pc)L

1/n;0.54 are superimposable o
top of each other. These results attest to the correctnes
Eq. ~5!; accordingly, I analyze the results of simulation
based on it. It is an important point that Eq.~5! can be widely
applied as shown in this figure; in other words, it is n
restricted to the condition thatL andp approach infinity and
pc , respectively. Further, Eq.~5! reveals thataav is a func-
tion of (p2pc)L

1/n on the grounds that theR-a curve is
determined by the value of (p2pc)L

1/n. Figure 4 shows the
relationship betweenaav and (p2pc)L

1/n. The value ofaav

increases monotonically with (p2pc)L
1/n, and the increas-

ing rate becomes abruptly large in the neighborhood of 0
On the basis of the above results, it is possible to evalu

R in the following way whenL, a, andp of the system are
known. The values ofaav andDa are first obtained from the
curves of Figs. 2 and 4. These values are those of theR-a
curve drawn for the set ofL and p. Then the transformed
aspect ratioan is calculated froma by substituting the values
of aav andDa into Eq.~4!. Finally, R is evaluated froman by
referring to the curve of Fig. 1~b!. The validity of this
method was confirmed by applying it to arbitrarily chos
conditions ~L5150, a50.26, and p50.541!; that is, R
50.286~evaluated value! agreed well withR50.283~simu-
lated value!. This method makes it possible for us to evalua
R of the rectangular system without carrying out statisti
simulations.

This work was supported in part by a grant from the Ce
tral Research Institute, Fukuoka University, Japan.

FIG. 4. Plot ofaav vs (p-pc)L
1/n. The symbols here correspon

to those of Fig. 2.



er

er

, J

.

PRE 62 8813BRIEF REPORTS
@1# R. A. Monetti and E. V. Albano, Z. Phys. B: Condens. Matt
82, 129 ~1991!.

@2# R. A. Monetti and E. V. Albano, Z. Phys. B: Condens. Matt
90, 351 ~1993!.

@3# R. A. Monetti and E. V. Albano, J. Phys. A26, 3955~1993!.
@4# J. L. Cardy, J. Phys. A25, L201 ~1992!.
@5# R. P. Langlands, C. Pichet, Ph. Pouliot, and Y. Saint-Aubin

Stat. Phys.67, 553 ~1992!.
@6# R. P. Langlands, Ph. Pouliot, and Y. Saint-Aubin, Bull. Am

Math. Soc.30, 1 ~1994!.
@7# R. M. Ziff, Phys. Rev. Lett.69, 2670~1992!.
@8# R. M. Ziff, J. Phys. A28, 1249~1995!.
@9# R. M. Ziff, J. Phys. A28, 6479~1995!.
.

@10# R. M. Ziff, Phys. Rev. E54, 2547~1996!.
@11# J. P. Hovi and A. Aharony, Phys. Rev. E53, 235 ~1996!.
@12# C. D. Lorenz and R. M. Ziff, J. Phys. A31, 8147~1998!.
@13# J. C. Gimel, T. Nicolai, and D. Durand, J. Phys. A32, L515

~1999!.
@14# S. J. Marrink and M. A. Knackstedt, J. Phys. A32, L461

~1999!.
@15# Chai-Yu Lin, Chin-Kun Hu, and Jau-Ann Chen, J. Phys. A31,

L111 ~1998!.
@16# M. Acharyya and D. Stauffer, Int. J. Mod. Phys. C9, 643

~1998!.
@17# D. Stauffer and A. Aharony,Introduction to Percolation

Theory, 2nd ed.~Taylor & Francis, London, 1992!.


